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Embedding dissipation and decoherence in unitary evolution schemes
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Dissipation and decoherence, and the evolution from pure to mixed states in quantum physics are
handled through master equations for the density matrix. By embedding elements of this matrix
in a higher-dimensional Liouville-Bloch equation, the methods of unitary integration are adapted
to solve for the density matrix as a function of time. Results are illustrated for a damped, driven
two-level system, the work involved being nearly all analytical.
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The study of open quantum systems is of widespread
interest across different areas of physics particularly in
the irreversible processes of dissipation and decoherence
afforded by coupling to an external reservoir or environ-
ment. Quantum optics is replete with such studies for
optical bistability, resonance fluorescence, and the gen-
eral evolution from pure to mixed states, often consid-
ered through damped, driven two-level atoms [1]. Cou-
pled quantum wells in a wider context and the study of
quantum Brownian motion, dissipation and fluctuations
have also received much attention [2]. Application of
such considerations to “quantum non-demolition” in the
emerging field of laser-interferometric gravitational wave
detection, and of quantum noise and decoherence in the
field of quantum computation, add to the importance of
this subject. Finally, this evolution from pure to mixed
states is at the heart of the problem of measurement in
quantum theory [3].

On the other hand, unitary integration schemes for
the evolution operator of time-dependent Hamiltoni-
ans, when available, are powerful because they pre-
serve invariants and are stable, also in numerical ap-
plication. In this Letter, we present a general proce-
dure and illustrate with an example how to preserve
most of these advantages even while working with sys-
tems exhibiting dissipation and decoherence. There
are two key steps. First, the n-dimensional Liouville-
von Neumann-Lindblad (LvNL) equation containing dis-
sipation and decoherence is embedded in a (n2 − 1)-
dimensional Liouville-Bloch form with a non-Hermitian
Hamiltonian. Second, this Liouville-Bloch equation is
handled by a “unitary integration” procedure that has
been described in recent years [4, 5, 6] wherein the evo-
lution operator is written as a product of exponentials,
each exponent involving an element of a closed Lie alge-
bra of operators together with a multiplicative classical
function of time. With all the non-commutativity han-
dled analytically, the entire problem is reduced to solving
coupled, first-order differential equations for this set of
classical functions. In many cases, this set reduces to a
single non-trivial Riccati (first order, quadratically non-
linear) equation for one of the classical functions, all the
rest then obtained through trivial quadratures [6]. All of

the above features remain valid even when the Hamilto-
nian is non-Hermitian and the evolution non-unitary.

Two other papers share our aims in setting the pas-
sage from pure to mixed states in a unitary evolution
scheme but they proceed differently. One deals with weak
dissipation, handling the Hermitian part of the LvNL
equation through unitary integration and the dissipa-
tive terms through conventional integrators [7]. Because
of their focus on numerical integration, both these han-
dlings are for small time steps whereas we aim for integra-
tion over arbitrary, finite t. Another work [8] introduces
a novel “square root operator” of the density matrix and
an associated n2-dimensional Hilbert space, along with
additional constraints that are not in conventional quan-
tum mechanics. Our embedding in a higher dimensional
space does not introduce any new elements beyond those
already in the density matrix.

We begin with the master equation for the density
matrix ρ, sometimes called the Liouville-von Neumann-
Lindblad equation [1, 2, 3],

iρ̇ = [H, ρ] +
1

2
i
∑

k

(
[Lkρ, L

†
k] + [Lk, ρL

†
k]
)

= [H, ρ]− 1

2
i
∑

k

(
L†kLkρ+ ρL†kLk − 2LkρL

†
k

)
,(1)

where an over-dot denotes differentiation with respect to
time and ~ has been set equal to unity, H is a Hermi-
tian Hamiltonian, and the second term on the right-hand
side is the “Liouvillian super-operator” describing cou-
pling to the environment and the resulting irreversibil-
ities of dissipation and decoherence. The above form
in the Markov approximation with an explicitly trace-
less right-hand side guarantees conservation of Tr(ρ) and
positivity of the probabilities. For a more mathematical
description in terms of so-called “dynamical semigroups,”
we refer to [9, 10].

Our aim in this paper is to solve Eq. (1) for fairly gen-
eral time-dependences of H and the L’s contained in it,
while keeping as closely as possible to the unitary inte-
gration that applies in the absence of the super-operator.
This method [4, 5, 6] has been developed when H(t) is a
sum of terms, each of which involves a time-independent
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operator multiplying a classical function of time. In such
a case, without any recourse to time-ordered Dyson ex-
pansions, one can solve for the evolution operator U(t)
satisfying

iU̇ (t) = H(t)U(t), U(0) = I, (2)

by writing U(t) as a product

U(t) =
∏

j

exp[−iµj(t)Aj ], (3)

where Aj are the operators contained in H(t) together
with a sequence of other operators formed out of their
mutual commutators in a successive fashion. If this set
forms a closed algebra under commutation, then upon
substitution, Eq. (3) can be shown to satisfy Eq. (2)
through repeated application of the Baker-Campbell-
Hausdorff (B-C-H) identity [4,6]. This results in a well
defined set of coupled first-order, generally nonlinear,
equations for the functions µj(t). Thereby the quantal
problem is reduced to the classical one of solving this set
of equations, following which ρ(t) is obtained as

ρ(t) = U(t)ρ(0)U †(t). (4)

In extending this procedure, consider first retaining
only the first two terms in the superoperator so as to
have Eq. (1) take the form

iρ̇ = V ρ− ρW. (5)

Even with V and W non-Hermitian, it is simple to extend
Eq. (4) by using two different products UL(t) and UR(t)

so that ρ(t) = UL(t) ρ(0)U †R(t), with correspondingly dif-
ferent functions µLj(t) and µRj(t) in Eq. (3). Once again,
upon calculating iρ̇ with such a form, the B-C-H identity
can be used to cast it in the form of the right-hand side
of Eq. (5), that is, having all operators standing on the
left or right of ρ(t). From Eq. (5) there then follow a well-
defined set of equations for the µL and µR. However, the
last term in the superoperator in Eq. (1), wherein ρ(t)
occurs between operators multiplying it both on the right
and from the left, no longer permits easy generalization.
Note that this last term is the so-called “quantum jump”
in interpretations of the LvNL equation as conventional
continuous evolution albeit with a non-Hermitian Hamil-
tonian (V = H,W = H†) plus a jump [11].

For the full master equation, we proceed by separating
the invariant Tr(ρ) from the n2 elements ρij(t). Eq. (1)
then reduces for the remaining n2 − 1 elements to the
Liouville-Bloch form

iη̇(t) = L(t)η(t), (6)

where one convenient choice for the (n2 − 1) elements of
η is ρ11 − ρii, i = 2, 3, ...n; ρij + ρji, ρij − ρji, i > j. The
first (n − 1) of these describe the diagonal elements of
the density matrix, the other (n2−n) i 6= j, describe, re-
spectively, in-phase dispersive and out-of-phase absorp-
tive components of polarization. Even though L may
not be Hermitian, the form of Eq. (6) is now the same
as in Eq. (2) with all operators to the left of η so that
the same procedure of a product exponential form for
η(t) as in Eq. (3) can be carried out now in the (n2− 1)-
dimensional space. Thereby, the LvNL equation for ρ has
been embedded in a higher-dimensional Liouville-Bloch
equation.

One immediate consequence is worth noting. If the
operators Lk in Eq. (1) are such that L in Eq. (6) in-
volves imaginary elements and, consequently, η decays
asymptotically, η(t → ∞) → 0, then all coherences van-
ish (off-diagonal ρij) and all diagonal ρii become equal,
ρii(t→∞)→ (1/n)Tr(ρ(0)). Tr(ρ2) on the other hand,
decreases asymptotically to (1/n) of its initial value. A
specific n = 2 illustration will be given below of this
rather general conclusion.

To demonstrate this method, we turn now to a series
of recent papers [12] that discussed phase coherences and
transitions in a periodically driven two-level system with
a single L in Eq. (1):

H =
1

2
ε(t)σz + Jσx, L =

√
Γσz, ρij(0) = δijδi1. (7)

Applying our procedure, we have ρ11(t)+ρ22(t) = 1, and
Eq. (6) for the three remaining elements takes the form

i
d

dt



ρ12 + ρ21

ρ21 − ρ12

ρ11 − ρ22


 =



−iΓ −ε(t) 0
−ε(t) −iΓ 2J

0 2J 0




×



ρ12 + ρ21

ρ21 − ρ12

ρ11 − ρ22


 . (8)

To solve this as a product of exponentials, we need the
eight operators of an SU(3) algebra. Instead, we adopt a
simplified variant of Eq. (7) as our model with a symmet-
ric choice for the Lk involving all three Pauli matrices,
that is, Lk =

√
Γ/2σk. This modifies Eq. (8) to introduce

also a (−iΓ) in the third diagonal element of the matrix.
With the matrix then expressible as

L = −iΓI − ε(t)Az + 2JAx , (9)

where Ax, Ay, Az are the operators of angular momen-
tum in a representation
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Ax =




0 0 0
0 0 1
0 1 0


 , Ay =




0 0 −i
0 0 0
i 0 0


 ,

Az =




0 1 0
1 0 0
0 0 0


 , (10)

the closed Lie algebra of these three suffices to solve
Eq. (6) by our unitary integration procedure. Since this
procedure rests only on the commutators between Aj, we
can use any representation of them as is convenient. We
exploit this in choosing Eq. (10) so that L involves the Aj
only linearly. Although, for comparison with [12], only
ε in Eq. (9) is a function of time, we note that every-
thing that follows applies also to more general time de-
pendences of J and Γ and inclusion of a time-dependent
term in Ay as well.

The first term in Eq. (9) leads to a trivial factor
exp(−Γt) and the remaining Hermitian part of L has
been solved before [6]:

η(t) = exp[−Γt] exp[−iµ+(t)A+]

× exp[−iµ−(t)A−] exp[−iµ(t)Az ]η(0), (11)

with A± ≡ Ax ± iAy, η(0) = (0, 0, 1), and

µ̇+ − iε(t)µ+ − J(1 + µ2
+) = 0, (12a)

µ̇ = 2iJµ+ − ε(t), (12b)

µ̇− − iµ̇µ− = J, µi(0) = 0. (12c)

The first of these equations, involving µ+(t) alone in Ric-
cati form, is the only non-trivial member of this set. So-
lutions give through Eq. (11),

ρ11(t) =
1

2
+

1

2
exp(−Γt) [1− 2µ+(t)µ−(t)],

ρ22(t) =
1

2
[1− exp(−Γt)] + µ+(t)µ−(t) exp(−Γt),

ρ12(t) = iµ−(t) exp(−Γt),

ρ21(t) = iµ+(t)[µ+(t)µ−(t) − 1] exp(−Γt). (13)

The coherences vanish asymptotically and ρ11 and ρ22 at-
tain the value 1

2 as t→∞. While Tr(ρ) remains always
at unity, Tr(ρ2) decreases to (1/2). Simple numerical
integration of Eq. (12a) for an oscillating driving field
ε(t) = A cos(ωt) are shown in Figs. 1 and 2 for various
values of the parameters (ω, J, A,Γ) . They are in agree-
ment with [12]. In Fig. 2(c), we also record the time
evolution of the entropy, S = −Tr(ρ ln ρ). The value of
Γ governs the rate of rise as S increases monotonically
from 0 to its asymptotic limit of ln 2.

FIG. 1: ρ22(t) for an oscillating driving field with J/ω = 3,
A/ω = 45, and damping values (a) Γ/ω = 0, (b) Γ/ω = 0.35,
and (c) Γ/ω = 5.

In summary, an n-dimensional LvNL equation describ-
ing dissipation and decoherence (or, alternatively, con-
tinuous evolution plus a quantum jump) of the density
matrix ρ(t) is first embedded into an (n2−1)-dimensional
Liouville-Bloch equation for diagonal and off-diagonal
combinations η(t) of ρ(t). A unitary integration scheme
is then applied to this form of the equation, with η(t)
expressed as a product of exponentials involving a lim-
ited, finite number of factors and operators, often just the
three of angular momentum. Through this procedure, all
elements of ρ(t) are obtained in terms of solution of a sin-
gle Riccati equation for a classical function together with
ordinary multiplication and integration.

We thank Drs. Dana Browne and Lai Him Chan for
suggesting we follow the entropy of evolution.
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FIG. 2: As in Fig. 1, for ρ12(t) with (a) Γ/ω = 0 and (b)
Γ/ω = 0.35. The entropy S for Γ/ω = 0.29 is shown in (c).
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